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Abstract—The evolution of 3G Code Division Multiple Access 

(CDMA) network towards higher data rates is through the 
introduction of High Speed Downlink Packet Access (HSDPA) 
enhancement to the existing 3rd Generation Partnership Project 
(3GPP)  standards.  In this paper, an access control protocol is 
proposed for an integrated voice, video and non real-time data 
traffic on the forward link (cell-site to mobile).  The protocol 
involves predicting the residual capacity available for the 
HSDPA traffic.  This paper evaluates the performance of three 
video traffic models in predicting the number of data packets 
that could be scheduled at the next time slot.  All three video 
traffic models exploit the frame properties of Motion Picture 
Experts Group (MPEG) traffic.  The traffic models are based on 
Markovian, Autogressive (AR) and two-sided Markov Renewal 
Model (TSMR) processes.  The performances of the proposed 
estimation schemes are compared with estimation scheme using 
static guard margin.  Findings of this paper can be used to 
improve the downlink performance of non-real time data traffic 
in the presence of MPEG video traffic in 3G CDMA networks. 
 

Index Terms— Code division multi-access, access control, 
dynamic estimation, residual capacity, traffic prediction, 
voice/data/video services, MPEG 
 

I. INTRODUCTION 
n 3G CDMA networks, the scarcity of the available radio 
frequency spectrum is always the major limiting factor in 

the system.  Therefore, efficient allocation of the bandwidth 
among users and different types of services is the key to 
improving the network performance.  Unlike 2G networks, 
which mostly carry homogeneous voice traffic, 3G networks 
carry various type of traffic with different quality of service 
(QoS) requirements.  Voice and streaming video traffic are 
very delay sensitive and require delivery in real time.  The 
bandwidth requirement of voice traffic is well-understood and 
assumed statistically stable after aggregation.  The bandwidth 
requirement of voice traffic can vary and depends on the 

 
 

content.  Data services such as text messages, web browsing, 
music downloads have less stringent delay requirements, thus 
they are classified as non-real time traffic, which can be 
delivered with a lower priority in the system.  Therefore 
finding the optimal balance in bandwidth allocation between 
real time and non-real time traffic is very important in 
providing a reliable integrated service to the end users. 

To achieve efficient bandwidth allocation between real time 
and non-real time traffic, the network has to apply an access 
control scheme to maintain the total system interference and 
power consumption within the operation limit.  In previous 
research [1][2] in CDMA systems, most proposed admission 
control schemes are mainly focused on supporting voice and 
data services.  Notable exceptions are the access control 
schemes based on video traffic prediction proposed in [1][2].   
The idea is based on the statistically significant fluctuation of 
bandwidth of voice and video traffic.  By applying a traffic 
model to the real time traffic in the current time slot, the 
system can predict the residue capacity in the next time slot, 
thus it can optimize the scheduling of non-real time data 
transmission.  The above two proposals are based on 2G IS-
95B CDMA network, using basic discrete-state continuous 
time Markov chain to model the video traffic and focus only 
on the uplink channels. 

In this paper, the work in [1][2] is extended to apply the 
same access control scheme to 3G CDMA networks and focus 
on the downlink channels, since video and data traffic are 
mostly asymmetrical downlink traffic.  Recent developments 
in the downlink high-speed packet access (HSDPA) of 
WCDMA and the advantage of using the shared downlink 
channel are considered.  This paper applies the proposed 
access control schemes to schedule data traffic in the high-
speed shared downlink channel.  This paper also looks into 
recent development on video traffic models, to replace the 
Markov chain traffic model used in the previous proposals for 
residual capacity prediction.  In this paper, three different 
types of traffic models exploring different statistical 
characteristic aspects of MPEG video traffic are investigated 
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and compared in simulation.  They are markov, 
Autoregression (AR) and two-sided markov renewal model 
(TSMR) based traffic model respectively.  The performance of 
applying different traffic mode in the prediction scheme are 
evaluated and analyzed with the simulation result, followed by 
conclusions highlighting the main contributions of this work. 

II. TRAFFIC MODELS 

A. Voice Traffic 
An ON/OFF voice activity model is used to model the voice 

traffic.[1][2] In the ON state, the call utilizes a CDMA 
channel, and in the OFF state, no power is transmitted due to 
silence detection.  We assume that the ON and OFF periods 
are independently and exponentially distributed with transition 
rate of μ (from ON to OFF) and λ (from OFF to ON).  The 
voice source model is assumed to be a conventional discrete-
time Markov process.  

B. Video Traffic 
In both of the previous works [3][4] on which this paper is 

based, the aggregated video traffic is modeled as a discrete-
state continuous time Markov birth-death process. [5]  This 
video traffic model is one of the earliest works published in 
this area and is widely referenced.  Since its publication, there 
have been many proposed video traffic models with better 
accuracy.  This paper chose to investigate the application of 
the following three video models in traffic prediction based 
access control. 

 
1) Markov-based Model 

 The first model uses a finite state Markov chain to model 
the MPEG video sequence.[6]-[8] The model isolates 
individual I, P and B frames into 3 sets of frame size data.  
Each set of data is represented by n states, where each state S 
quantizes the bandwidth requirement of each frame.  The 
transition probability pij from Si to Sj is estimated from the 
empirical data as follows: 
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where Ni is the total number of times that the system goes 
through states Si, Nij is the number of times that the system 
makes a transition to state Sj from Si.  Since a Markov chain 
has the memoryless property, the size of the next I, P, and B 
frame Sz[k+1] is predicted using the previous I, P and B 
frame state S[k] as follows: 
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where Szj is the frame size at state Sj.  The predicted frame 
size of the next I, P and B frame sequence is then combined 
following the underlying MPEG GOP sequence.  

  

2) Auto Regression (AR) Model 
The second model uses second-order autoregressive (AR) 

process to model the MPEG video sequence [10].  The AR 
model can estimate the short-range dependence (SRD) nature 
in the autocorrelation function of the frame sequence.  AR 
process is a linear system with input {s(t)} and output {y(t)}, 
where t is the discrete time.  The finite AR process is define 
by  
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where {s(t)} is an uncorrelated process with zero mean and 
variance σ2, and {ak, 1 ≤ k ≤ p} is a finite sequence with ap ≠ 
0. Such a process is denoated by AR(p) and p is called the 
order of the AR process.  There are a number of methods to 
estimate the parameters for an AR process given {y(t)}.  In 
this paper, the parameters are estimated using the Yule-
Walker estimation with p = 2. 

 In the AR model, the video sequence is split into I-frame, 
P-frame and B-frame sequences and each sequence is modeled 
independently.  High correlation has been observed 
consistently in the split sequence since adjacent frames tend to 
have similar scenes and amounts of motion.  The frame size of 
the next frame in the sequence Sz[k+1] is predicted as 
follows: 

1 2[ 1] [ ] [ 1] ( )Sz k a Sz k a Sz k kε+ = + − +  (4) 

where ε(k) is the error function modeling the frame 
fluctuation.  In this paper, we choose ε(k) = σ2, the variance of 
the frame sequence, to give some extra margin to the AR 
model.  Finally, the next frame size prediction of the I-frame, 
P-frame, and B-frame are combined together according to the 
GOP pattern. 

 
3) Two-sided Markov Renewal (TSMR) Model 

The third video traffic prediction model is called the two-
sided Markov Renewal model (TSMR), which models the 
variation of the video traffic using a modified Markov-
renewal process [11]. The Markov states in the process are 
classified into two groups: low-variation states correspond to 
small changes in adjacent frame size, and high-variation states 
correspond to a significant change in frame size.  The 
difference in frame size within each Markov state is modeled 
to match both the autocorrelation structure and marginal 
distribution function.  This model is used explicitly for 
prediction and a two-sided backward recurrence time series Ck 
is constructed as shown in Fig. 1. 
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Fig. 1.  State transition diagram for the backward recurrence series 

 
First, the sequence of difference in frame sizes in the video 

is calculated.  Each value in the sequence is identified into 
high-variation state if the absolute change in the adjacent 
frame size is larger than a predefined threshold; otherwise, the 
value is in low-variation state.  Then the duration for the low-
variation and high-variation states is counted from the two-
sides of the TSMR sequence.  The transition matrix P of the 
TSMR process is estimated from empirical data as follows: 
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In forecasting the next state, the transition matrix P is 
referred to with the simplest prediction strategy, where the 
state with highest probability is selected.  The difference 
between the current frame size and the next one is predicted 
and added back to the current frame size to generate the 
prediction of the next frame size.  Since the frame difference 
is modeled as Gaussian i.i.d. process, it can be estimated by 
the sample mean of the frame difference sequence to minimize 
the mean square error (MSE) between the observed value and 
the forecast. 

 

III. RESIDUAL CAPACITY ESTIMATION AND ACCESS CONTROL 
In CDMA system, the maximum downlink power the base 

station can transmit in a single cell is W.  We assume that that 
there are Kvo voice users, Kvd video users, and Kd data users 
accessing the forward link channel.  The voice and video 
traffic are considered as real-time traffic and the data traffic is 
assumed non real-time traffic.  Real-time traffic is delivered to 
the mobile station over the dedicated traffic channel with 
minimal delay.  Non real-time traffic is delivered to the 
mobile station using the high-speed downlink shared channel.  
In a power limited CDMA downlink system, the transmission 
power assigned to K users is feasible if and only if 
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where rj and γj are the data rate and the required per bit 
transmit power of the jth user.  Assume the required per bit 
transmit power for voice, video and data services are γvo, γvd 
and γd respectively.  Then, the feasibility equation from above 
can be written as 
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where vo(n), vd(n) and d(n) are the consumed bandwidths of 
active voice, video and data users who transmit at the nth time 
slot respectively.  Γd(n) is defined as the ideal residual 
capacity for data users at the nth time slot.  An outage event 
happens when the above inequality is violated.  When the 
required transmit power is higher than the maximum power 
the antenna can provide, the transmit power is allocated to 
real-time traffic first, then the remaining transmit power is 
given to non real-time traffic.  As a result, the data users will 
receive non real-time traffic below the required SNR that 
cannot be successful decoded.  The incorrectly decoded 
received data is not discarded in hybrid-ARQ with soft 
combining scheme implemented in HSDPA.  Instead, the 
received signal is stored and soft combined with the later 
retransmissions of the same information bits.  The combined 
signal effectively increases the received SNR, increasing the 
likelihood of a successful decoding of the information bits.  

 
1) Static Residual Capacity Estimation 

To reduce the outage event due to imperfect estimation, the 
estimated residual capacity Γd(n + 1) for data users at the 
(n+1)th time slot is commonly predicted less than the ideal 
residual capacity Γd(n) at the nth time slot as follows 

 ( 1) ( ) ( )d dn n nΓ + = Γ − Δ  (8) 
where Δ(n) is called a guard margin at the nth time slot.  

 In the static estimation scheme, the guard margin Δ(n) is 
statically set as a certain percentage of the maximum transmit 
power regardless of the time slot [12]. 

 
2) Dynamic Residual Capacity Estimation 

In the dynamic estimation scheme, the guard margin Δ(n) is 
dynamically calculated based on the traffic load of voice and 
video services [12]. 

For Kvo voice users in the system and av(n) active voice 
users in the nth time slot, the predicted voice traffic vo(n+1) in 
the (n+1)th time slot is given by 
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where Pij are the transition probabilities of the Markov process 
and Rv is the data rate of voice packet per channel per time 
slot. 

For the prediction of the video traffic load, we have chosen 
to implement and evaluate the three video traffic models 
introduced in section 2.  Assume Kvd video users in the 
system. Then the predicted video traffic vd(n+1) in the (n+1)th 
time slot is represented by  

 ( 1) ( ( ), ( 1)... (0))
vdK

j j j
j
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where f(.) is the prediction algorithm of the Markov model, 
AR model or TSMR model depending on the setup. 
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3) Access Control 
In the HSDPA extension to the UMTS network, only up to 

one data user transmits a packet during the slot duration.  
Hence, the residual capacity, the data rate of data packet that 
could be scheduled at the (n+1)th time slot is estimated to be 
Γd(n+1).  When more than one data user is active in the same 
cell site, the base station will select the user to transmit based 
on the Channel Quality Indicator (CQI) of the mobile station 
using different scheduling schemes.  To limit the variables in 
this research, we assume the users are uniformly distributed in 
the cell site and perfect power control, so that the CQI of all 
data users are equal, therefore the data user in the next time 
slot is selected in a round-robin fashion. 

IV. SIMULATION RESULTS 
In this section, we present a detailed performance 

evaluation of the access control schemes proposed including: 
1) statistic residual capacity estimation, 2) dynamic residual 
capacity estimation using a) Markov-based model, b) Auto 
Regression (AR) model, and c) Two-sided Markov Renewal 
(TSMR) models for video traffic.  We also include dynamic 
residual capacity estimation using ideal video traffic 
prediction, which uses the exact frame size of the next frame, 
to give the upper bound performance of the access control 
schemes for reference.  Table I shows the parameters used in 
the simulation and Table II lists the statistics of the selected 
video trace used in the simulation. 

The main problem considered in this paper is to investigate 
which access control scheme and traffic model yield better 
network performance in the cell site.  Accordingly, we use the 
measurements of the following two performance metrics in 
the simulation: 

1. Packet delay or file transfer time:  Time from sending 
a packet or a file to the RNC until the correct 
reception of the packet or file by the UE. 

2. Percentage of retransmission: The number of 
retransmissions divided by the total number of PDUs 
sent in the HSDPA channel. 

 
1) Scenario 1: Video Traffic with File Transfer 

The first scenario simulates the cell site with only video 
users and data user downloading large files.  The simulation 
results of 1 to 10 video users in the cell site are given in Fig. 
1a and Fig. 1b.  The first observation is as the number of 
video users increases, the delay also increases due to more 
bandwidth being used up by the video traffic.  The second 
observation is static residual capacity estimation has the worst 
performance, since it cannot anticipate the fluctuation in the 
bandwidth requirement of video traffic.  Dynamic estimation 
using Markov model is slightly better than static estimation, 
but considerably worse than using prediction using the AR or 
TSMR models.  The Markov model does not take the SRD 
nature of the video traffic into account, thus it tends to 
overestimate the residual capacity.  As a result, there are more 
time slots exceeding the maximum power limit at the BS and 
causing higher retransmission percentage to the data traffic.  

The third observation is the performances of TSMR model 
and AR model are comparable.  The AR model is slightly 
better in lower video loads, while the TSMR is slightly better 
in higher video loads.  When there are more video users in the 
cell site, the retransmission percentage of the TSMR model 
decreases as the aggregation of more video streams tends to 
smooth out the spikes in the frame size fluctuation. 

 
2) Scenario 2: Video and Internet Traffic 

The second scenario simulates the cell site with only video 
traffic and data users browsing the internet, which is modeled 
using the Poison Pareto Burst Process [13]. The simulation 
results of 1 to 10 video users and 10 data users in the cell site 
are given in Fig. 1c and Fig. 1d.  The observations in this 
scenario are similar to the previous scenario.  Static estimation 
has the worst performance, while the dynamic estimation with 
TSMR and AR model is significantly better.  Unlike scenario 
1, internet traffic is bursty in nature with low bandwidth 
consumption between the data bursts. Thus, the HSDPA 
channel buffer is not always full.  Therefore, the more 
aggressive estimation by TSMR model cannot squeeze enough 
residual capacity to offset bandwidth lost to retransmission.  
As a result, the AR model has better performance. 

 
3) Scenario 3: Mixed Voice, Video and Internet Traffic 

The third scenario simulates cell site with mixed voice, 
video and data users browsing the internet.  The simulation 
results of 0 to 20 voice users, 10 video users and 10 data users 

TABLE II 
OVERVIEW OF FRAME STATISTICS OF THE VIDEO TRACE 

Video Source Starship Troopers 
Format QCIF 
Encoding H.264 

Length 60 minutes 
Quantization 31 
Frames 90000 
Total Size 18026929 bytes 
Min frame size 10 bytes 
Max frame size 4962 bytes 
Mean bit rate 40059.84 bit/s 
Mean I-frame size 859.99 bytes 
Mean P-frame size 248.7 bytes 
Mean B-frame size 99.61 bytes 

 

TABLE I 
SIMULATION PARAMETERS  

Parameters Value 
TTI Length 20ms 
Total BS Power 20W 

Static Estimation Power Margin 1W 
Maximum Bandwidth of the Cell 2.5Mbps 
PDU size 40 bytes 
Radio Link Control Protocol AM 
Iub delay 0.2ms 
Effective Rate of 1st Retransmission 3/8 
Effective Rate of 2nd Retransmission ¼ 
DCH Capacity 256 kbps 
Voice Call Data Rate 9.6 kbps 
Voice Call Activity Factor 0.4 
Scenario 1 File Size 1M bytes 
Scenario 2 Poisson Arrival Rate 0.5s 
Scenario 2 Pareto Minimum Packet Size 2.5 kbytes 
Scenario 2 Pareto Parameter 1.5 
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in the cell are given in Fig. 1e and Fig. 1f.  Both the packet 
delay and retransmissions percentage stay mostly flat as the 
number of voice channels increases.  The small amount of 
bandwidth consumed by the voice traffic can be neglected in 
the presence of bandwidth hungry video traffic.  The 
performance of static estimation is worse than dynamic 
estimation, and prediction using the AR model is better than 
using the TSMR model, which agrees with the observation 
from the previous two scenarios. 

V. CONCLUSION 
In this paper, we have investigated the application of 

MPEG traffic models to traffic prediction based access control 
in the forward link of WCDMA HSDPA channel.  Simulation 
is setup to evaluate the performance of static residual capacity 
estimation and dynamic residual capacity estimation using 
Markov, AR and TSMR video traffic model.  It is concluded 
that dynamic estimation based access control outperforms 
static estimation based access control in integrated voice, 
video and data traffic in term of data message delay and 
retransmission percentage.  Among the three video models, 
the AR and TSMR model are superior to the Markov model.  
The TSMR model performs better in high video loads with 
HSDPA buffer full most of the time, where the AR model 
performs better with bursty internet traffic.  When the video 
model is too aggressive in reclaiming the residual capacity, it 
may overestimate the available bandwidth for the data traffic 
and cause the total traffic to exceed the transmission power at 
BS and bandwidth is wasted due to retransmission.  
Depending on the nature of non real time data traffic, in order 
to reduce the delay of data traffic, it has to strike a balance 
between scheduling more data into each time slot and 
preventing over scheduling in each time slot.  It is also 
concluded that in the integrated voice, video and data CDMA 
system, we can neglect the voice channels in traffic prediction 
as video channels consume most of the bandwidth for real 
time traffic. 
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Fig. 1.  (a) File transmission time vs number of video channels in scenario 1 (b) Retransmission percentage versus number of video channels in scenario 1 (c) Packet delay 
vs number of video channels in scenario 2 (d) Retransmission percentage versus number of video channels in scenario 2 (e) Packet delay vs number of voice channels in 
scenario 3 (d) Retransmission percentage versus number of voice channels in scenario 2 
  


