
Hardware/Software co-verification using Specman

and SystemC with TLM ports
Horace Chan

PMC-Sierra Inc, 8555 Baxter Place,

Burnaby, BC, Canada, V5A 4V7

horace_chan@pmc-sierra.com

Brian Vandegriend

PMC-Sierra Inc, 8555 Baxter Place

Burnaby, BC, Canada, V5A 4V7

brian_vandegriend@pmc-sierra.com

Abstract—In modern ASIC/SoC design, the hardware and

software have to work seamlessly together to deliver the

functions, requirements and performance of the embedded

system. To accelerate time-to-market and to reduce overall

development cost, it is crucial to co-verify the software code with

the hardware design prior to tape-out. The software team can

start developing and debugging their code with the actual

hardware RTL code to shorten their overall development cycle.

The hardware team can use the software code to identify

performance bottlenecks and incorrect functional behaviors early

in the development cycle which helps to reduce the risk of

increasingly expensive device revisions.

The current approach to co-verification is primarily running the

software on the embedded processor inside the hardware design,

either within the simulator or with ICE (in-circuit emulation).

The disadvantage of this approach is slow debug turnaround time

and the higher cost is procuring and supporting a dedicated

emulation box or FPGA platform. In addition, the software is

running in isolation relative to the testbench, hence it is often

challenging and inconvenient to integrate the software with other

verification IP in the testbench.

In this paper, we will present an alternate approach on how to

integrate the software driver into the simulator using Specman

and SystemC with TLM ports. The software is running in the

same memory space as the testbench, both of which run through

the simulator on the Linux host. The advantage of this approach

is fast execution speed of the software and the interoperability of

the software with other verification components in the testbench.

The software code runs in zero simulation time and the testbench

has full control of the software using TLM ports and direct

memory access via pointers. In addition, the software code can

invoke gdb or any other C debugger to make debugging easier.

Keywords: Specman, System C, TLM, software, hardware, co-

verification, ISX, CVL

I. INTRODUCTION

In the past, software usually comes as an afterthought in
relation to hardware deliverables and the development of
device drivers or firmware happens late in the ASIC product
development cycle or even after silicon is available. Imagine
delivering silicon to a customer with a register document
spanning thousands of pages with untested or absent device
drivers or software to abstract those registers. In modern
ASIC/SoC designs, software is eclipsing hardware as the main
driver of system development cost. Customers now demand
that semiconductor companies deliver hardware and software

as an integrated and completely functioning system. The
quality and the availability of the software becomes a main
differentiator in the semiconductor market. Co-verification,
that is, testing the hardware and software working together
before tape out, is a critical factor contributing to the success of
an ASIC/SoC project. [1][2]

Co-verification provides three primary benefits. First, co-
verification gives the software engineer early access to the
hardware. They can start debugging the software code early in
the project without having to wait for the silicon to execute the
software on the hardware. By the time the silicon comes back
to the lab, there is already working software with most of trivial
bugs ironed out. Engineers can focus on testing system
integration and use the software to qualify the silicon for
production. Thus, co-verification can pull in the project
schedule and shorten the time-to-market cycle. Second, co-
verification provides additional testing for the hardware design.
The verification engineers can use the software executing on
the hardware in the simulation environment to generate
stimulus that mimics the true operation of the system, which
yields better corner cases coverage than using stimulus
generated by artificially models from the testbench. Co-
verification can identify system integration bugs before tape-
out when the bugs are less costly to fix. Third, co-verification
provides better visibility in debugging the software and
hardware interaction. When the software is running in the
silicon, it is a black box system with limited peeks and pokes
making it more difficult for verifiers to diagnose bugs in the
software and hardware integration. When the software is
running in a co-simulation environment, verifiers have white
box access to the internal operation of the complete system.
Co-verification can increase the productivity of the verifiers in
debugging system problems.

In this paper, the authors are searching for a co-verification
solution for a new embedded SoC, networking project.
Specman and the Cadence simulator are the mainstream tools
available to the project team. After evaluated the existing
methods available, they decided to develop an alternative co-
verification approach that utilize Specman’s unique powerful
features to overcome the disadvantages of existing methods.

The paper is organized as follows: In Section 2, we
introduce a generic SoC testbench architecture and outline the
problem statement of co-verification in general. Then we
briefly discuss existing methods and highlight their pros and
cons. In the subsequent sections, we describe the co-

verification approach using Specman and SystemC with TLM
ports, with the advantages and challenges of this method.

II. EVALUATE EXISTING CO-VERIFICATION METHODS

A. Generic Embedded SoC Testbench Architecture

Figure 1 shows a generic architecture of an embedded SoC
and its testbench. The embedded SoC has a CPU, along with
network interconnect (NIC) which connects the CPU and
various RTL IP blocks via an AXI bus. The RTL IP blocks
may consist of data processing units or external interfaces that
connect to the pins of the chip. The software executes on the
embedded CPU and communicates with the RTL IP blocks via
AXI transactions. In the software’s point of view, the complex
RTL hierarchy of the device is abstracted into a set of
accessible register and memory address space.

Our testbench platform is implemented using Specman
coupled with UVM (Unified Verification Methodology). The
testbench is controlled by a central virtual sequence that co-
ordinates the AXI transactions and interaction with the RTL IP
blocks. In the absences of the CPU, the AXI UVC (Unified
Verification Component) is acting as the BFM (Bus Function
Model) of the CPU that drives the AXI transactions sequence
from the testbench into the NIC. Coming from a verification
background, the most important criteria of co-verification is
compatibility with the existing testbench architecture. When
executing our testcases, we should able switch between using
our own AXI sequences and using the software driver with
minimal effort. The software should seamlessly communicate
with the other components in the testbench so that we can reuse
the scoreboard and checkers in the testbench to avoid re-
writing parts of the testbench. Other criteria which are
important for a co-verification solution are execution speed and
ease of debug, so that we can minimize any productivity hit of
testing the software together with the hardware.

Our device uses a commercially available embedded CPU
core and RTOS, which minimizes the verification of the low
level integration of the software and hardware operation. Our
verification focus is on the application layer of the software by
testing its functionality and its interaction with the RTL IP
blocks. From a hardware verification engineer’s perspective,

the software is nothing more than a collection of C functions
issuing register reads and writes operations into the AXI bus.
Thus, the problem statement of co-verification involves
answering three simple questions:

1) How to call a C function from the testbench?

2) How can a C function initiate AXI transactions on the

AXI bus through the BFM?

3) How to check that the AXI transactions and the targeted

RTL IP blocks demonstrate the correct behavior?

In the search for the best technical solution which meets our

needs, we investigated three alternatives: acceleration /

emulation, ISX/ISS and sockets/CVL. These alternatives are

outlined below, before we present the solution which we

finally adopted, the Specman to SystemC TLM bridge.

B. Acceleration/Emulation

The acceleration/emulation co-verification method uses
special equipment to emulate the RTL design. The CPU core
is synthesized into the emulation box and the software is
running on the CPU cycle by cycle. The Cadence Palladium
XP (UXE) [3] acceleration platform supports both In-Circuit
Emulation (ICE) and Simulation Acceleration (SA) mode of
operation. The advantage of co-verification with the ICE mode
is speed of execution, but there is essentially no reuse of the
testbench in ICE mode. In SA mode, we can reuse most of the
testbench, however the speed drops to that what is imposed by
the testbench. In addition, this mode still requires us to
integrate the software into the testbench using one of the
methods described below. As a result, the software is painfully
slow to run even with the 40x simulation speed up in SA mode.
Above all, the biggest disadvantage of this method is the price
tag, which means the equipment is limited to a very small
number of engineers working on the most critical pieces of the
system.

C. ISX/ISS

This co-verification method uses the Cadence Incisive
Software Extension (ISX) technology [4]. ISX provides debug
support of the software code running on an RTL model of the
CPU core in the simulator or running on a 3rd party Instruction

DUT

Embbed CPU

with AXI adaptor

Testbench

AXI UVC

Network

Interconnect
AXI bus AXI bus

RTL IP
RTL IP

RTL IP

RTL IP
RTL IP

VIP UVC

External Interface

Virtual Sequence

Driver

Figure 1. Generic Embedded SoC Testbench Architecture

Set Simulation (ISS) models. ISX integrates with our Specman
testbench very well; we can execute the software like it is a
native component of the testbench environment. However
running the software in SA mode is already painfully slow,
running it in pure simulation is a hundred times worse, so it is
out of the equation. Using ISX with an ISS model yields good
performance by giving up cycle by cycle accuracy. The
software code is running in a much faster abstraction model of
the CPU and ISX takes care of the AXI bus connections.
Although this method is not as expensive as UXE, the use of
ISX/ISS still requires purchase of additional licenses. Under
some scenarios when we need to test low level integration,
ISX/ISS is indeed the best co-verification solution. We still
have a hard time justifying the cost of extra licenses when
testing high level C code given that the next alternative is free.

D. Socket/CVL

This co-verification method uses a UNIX socket
communication as an interface mechanism between the
hardware and the software [5]. A client server model is
implemented to interface the testbench and software via a set of
API functions to facility calling C functions from the testbench
and calling testbench functions from the software. Specman
has built in support of this co-verification method via the Co-
Verification Link (CVL) library [6]. The advantage of this
method is speed and ease of implementation. The software is
compiled as a native executable running on a powerful Linux
host, which runs faster than the embedded CPU inside the
silicon. Hooking up the testbench to the software only involves
setting up the socket connection. The testbench calls external
C function like calling native Specman methods. This method
almost meets all our evaluation criteria except for two
shortcomings. The first problem is the CVL link only support
pass by value but not pass by reference. The software cannot
access internal data structure of the testbench and vice versa
without writing extra CVL API functions. Being able to peek
across the language boundary is a very handy feature that
allows us to insert customized testbench code into the software
to help us debug or carry out white box testing. The second
problem is the implementation of Specman CVL requires the
testbench relinquish the control to the software. In CVL, the

software is a layer above the testbench, so the C code is the
master and the testbench is the slave. Although it is relatively
easy to write a small piece of code that always passes the
control back to the testbench, we believe the software on top
architecture is fundamentally wrong conceptually. In a
verification environment, the testbench should be the master of
everything for efficient testing. It should have absolute control
over all the verification components, the RTL code and the
software code.

We would have settled for CVL co-verification method if
we did not come up with the Specman and SystemC with TLM
co-verification method. This method is detailed below.

III. SPECMAN TO SYSTEMC TLM SOFTWARE BRIDGE

A. Overview

Specman has excellent integration support with C code.
The Specman C interface is designed for implementing parts of
the testbench in C [7]. It provides full access to the Specman
memory space in C via an auto-generated C header file which
defines all the data structure in the Specman testbench.
Specman can call any C function and vice versa through the
built-in method interface. However there is a limitation in the
Specman-C interface, it does not support TCM (time
consuming method) across the language boundary. The C
functions can only be executed in zero simulation time. This is
a major issue since the software code has to aware of the
simulation time because register read and write operations from
the CPU to the RTL will cause the simulation time to advance
in the simulator.

Consequently, this limitation forced us to investigate
SystemC as Specman also has excellent integration support
with SystemC code. Specman can interface with SystemC
directly using TLM ports via the built in UVM-ML (multi-
language) library [8]. A blocking TLM port connects a
Specman TCM to a SystemC thread, which understands the
notation of simulation time. SystemC is an extension to C++
which is inter-operable with plain C code. In the Cadence
simulator, Specman code and SystemC code are executing
under the same memory space. By wrapping the Specman-C

Software bridge

C/SystemC domainSpecman e domain

AXI UVC

e2c TLM port

c2e TLM port

SystemC TCM

thread control

C swdrv wrapper

swtich {

}

swdv function 2

swdv function 1

swdv function 3

e System API

VR_AD

VR_AD

Sequence

e swdrv wrapper

swdv function 2

swdv function 1

swdv function 3

DUT

Backdoor

access

Software Code

C System API

Figure 2. Specman/SystemC TLM Software Bridge

interface inside a SystemC module, we found a way to let C
code be aware of the simulation time and invoke Specman
TCM methods which initiate the register read/write operations.
Thus the Specman – SystemC solution presented the best
approach and overcame the limitation inherent with CVL,
while not requiring the additional license that the ISX/ISS
solution presented.

Given the cross language boundary problem is solved, we
developed a Specman/SystemC TLM software bridge shown in
Figure 2. The core of the software bridge is pair of blocking
put TLM ports; one for the Specman to C calls and other for C
to Specman calls. For scalability consideration, we decided to
tunnel all function calls into two TLM ports instead of creating
separate TLM port for each function. Connecting a TLM port
from Specman to SystemC requires a small piece of code (aka,
the bridge) in both language domains. It is easier to maintain
the bridge by having a fixed permanent connection than keep
updating it to support every new function in the software code.

In the following sections, we illustrate the connection inside
the software bridge using a simple software function as an
example:

int foo(int arg1, int arg2, int arg3);

B. TLM port and data structure

A TLM port can transport a data structure across the
language boundary and we use this data structure to store all
the information contained within the function call. The data
structure has only two fields, the name of the function and a
pointer pointing to the memory address of another Specman
data structure which stores all the arguments and the return
value for the function call.

struct func_call_s {

func : func_name;

arg_ptr : uint;

}

In this example, the function name enum type extension
and argument data struct looks like this:

extend func_name_t : [foo];

struct foo_arg_s {

arg1 : int;

arg2 : int;

arg3 : int;

return_value : int;

}

The TLM port will automatically convert the Specman data
structure into an equivalent SystemC data structure under the
hood. Therefore we have to generate an equivalent data
structure of the Specman func_call struct in the SystemC
domain. The Cadence UVM-ML library has a handy utility
(mltypemap) that auto-generates a SystemC uvm_component
class from a Specman struct. With the two matching data
structure defined in both language domains, next we have to
implement the auto converting function for the TLM port.
Since the func_call data structure only has two scalar fields, the
converting function is very simple to implement. At last we
have to declare the TLM ports in the software bridge:

e2c : out interface_port of tlm_blocking_put_if of

(func_call_s) is instance;

c2e : in interface_port of tlm_blocking_put_if of

(func_call_s) is instance;

C. Specman to C software functions calls

There are wrapper functions at both sides of the TLM port.
On the Specman side, the software bridge has to define a TCM
that looks exactly like the software function, in which it fills in
the argument data structure and the func_call data structure,
and then passes the data structure into the TLM port. Since the
software function wrapper appears to be a plain TCM to the
rest of the testbench, VR_AD sequence can simply call the
software functions like calling any other native Specman TCM
without knowing the implementation of the TCM is actually
located in the C domain.

foo(arg1 : int, arg2 : int, arg3 : int) : int

@sys.any is {

 var foo_arg : foo_arg_s = new with {

 .arg1 = arg1;

 .arg2 = arg2;

 .arg3 = arg3;

 };

 var func_call : func_call_s = new with {

 .func = foo;

 .arg_ptr = foo_arg.get_pointer();

 };

e2c$.put(func_call);

return foo_arg.return_value;

};

On the C side, the body of the TLM port implementation is
a big case-switch statement that unrolls the func_call data
structure. First it has to determine which function to call, and
then it will resolve the pointer of argument data structure, call
the software function with the argument values and store the
return value back into the argument data structure. Note that
the C domain has full access to the memory address of the
argument pointer, so it is possible to support pass by reference
arguments in software function call.

switch (func_call->func) {

 case SN_ENUM(func_name_t, foo) :

 SN_TYPE(foo_arg_s) arg = (SN_TYPE(foo_arg_s))

 func_call->arg_ptr;

arg->return_value = foo(arg->arg1,

 arg->arg2, arg->arg3);

 break;

D. C to Specman system methods calls

When the software code needs to issues a read or write
operation on the CPU bus, it has to call system wrapper
functions. Two of the most commonly use function are system
write that write a value to a given address on the CPU bus and
system read that fetch the value of a given address from the
CPU bus. These two functions will stage the func_call data
structure and pass it into the c2e TLM port just like the above
examples. Here is an example of the system call wrapper
functions:

int sys_read(int addr){

 func_call_s func_call;

 SN_TYPE(sys_read_arg_s) sys_read_arg = new;

 sys_read_arg->addr = addr;

 func_call.func = sys_read;

 func_call.arg_ptr = &sys_read_arg;

 c2e->put(func_call);

 return sys_read_arg->return_value;

};

In the Specman side, the func_call data structure is unrolled
in a similar manner and then calls the corresponding VR_AD
operation in the VR_AD sequence driver. The system
functions are not limited to system read and write, the
testbench can extend the list of the supported system functions
depends on the requirement of the software. The following is a
list of system functions supported in our software bridge
implementation:

1) sys_write

2) sys_read

3) sys_read_modify_write

4) sys_burst_write

5) sys_burst_read

6) sys_poll_busy_bit

7) sys_wait

Most of the system functions can be implemented using
basic read and write, but sometimes it is more efficient to let
the testbench handle some of the repetitive operation to
minimize the cross language boundary handshake. The only
except is sys_wait, in which the software can indicate it wants
to sleep for a period of time, so it pass the control back to the
testbench to allow the simulation time to advance.

E. Software Bridge to Testbench Integration

The core of the software bridge is implemented in a
reusable Specman unit and a SystemC module that contains the
permanent binding of the TLM ports that is capable of
supporting any software function. The testbench writer has to
implement a wrapper function pair in the e domain and in the C
domain for each of the supported software functions. This is a
tedious and repetitive task that is prone to human error. In our
current implementation, we automate the generation of the
software wrapper. First, we use a document extraction tool,
such as Doxygen, to convert function prototypes in the C code
to XML. Then we use a Perl script to parse the XML and
output the e wrapper method and c wrapper function, in which
we use the Specman built-in SC2e utilities to auto-generate
conversion functions for the data types used in the arguments
of the software functions

Most of the software functions are passive functions; they
are only executed when they are called by VR_AD sequences
in the testcase. However some functions are reactive software
functions, such as an interrupt service routine. The testbench
has to trigger those software calls upon detecting a change on
an interrupt pin in the DUT. The following example illustrates
how to hook up the interrupt service route in the software using
a Specman event port.

interrupt : in event_port is instance;

 keep bind (interrupt,external);

 keep interrupt.edge() == rise;

 keep interrupt.hdl_path() == “dut.int”;

event interrupt_triggered is @interrupt$;

on interrupt_triggered {

 start isr();

};

isr() : int @sys.any is {

 var isr_arg : isr_arg_s = new;

 var func_call : func_call_s = new with {

 .func = isr;

 .arg_ptr = isr_arg.get_pointer();

 };

 e2c$.put(func_call);

};

Furthermore, in simulation, when there are lots of register
operations in the testcase, although each operation takes a small
amount of simulation time, when aggregated they consume the
majority of the simulation time. Sometimes it is desirable to
speed up the register operation by depositing the value into the
register or fetching the value from the registers directly without
going through the AXI bus. Since our software bridge
implementation connect to the AXI UVC via VR_AD, we can
just enable backdoor access in VR_AD to allow all the
software write or read transactions to the DUT occurs in zero
simulation time to speed up the simulation.

IV. ADVANTAGE AND BENEFITS

There are many advantage of the Specman with SystemC
over TLM port co-verification method over existing methods.
First of all, it is free if the testbench is already implemented in
Specman. Our method requires no extra license cost or
purchase of expensive hardware equipment. Specman and
SystemC are natively supported in the Cadence simulator. The
tools used to auto-generate the wrapper functions are either
open source (Doxygen) or come with the Specman package
(SC2e utilities and UVM library utilities).

Our method has very good execution speed since the
software code is compiled and executed on the Linux host
alongside with the simulator. Our method is convenient to
debug and no extra work is required to hook up a C debugger.
The software C code is compiled into SystemC, which allows
us to use the built-in SystemC debugger present in the Cadence
Simvision tool. We can set break points in the C code, inspect
any data structure during function calls and we can even step
across the e/C language boundary. Transactions of software
function calls can displayed alongside the RTL signals in the
waveform viewer using strip chart.

Our method is scalable. Since the software function call is
wrapped by a Specman TCM method, we can easily swap in a
VR_AD sequence to replace the software function call using a
WHEN subtype of the wrapper function. It allows the verifiers
to bypass the software code temporary if the software becomes
a road block to verifying the DUT. We can also swap in ISX
for cycle accurate simulation using the golden RTL model of
the CPU in order to verify the low level system integration.
The wrapper function TCM can have another WHEN subtype
that passes the function call into ISX’s GSA (generic software
adapter) interface.

Our method can also provide coverage on software
function. Since all of the software function arguments are
encapsulated in a Specman struct and all the function names are

listed in an enum type, we can easily generate coverage groups
on the software function arguments within the automated
wrapper generation script. The software bridge will emit a
coverage event every time a software function is called. We
can also use the VR_AD built-in coverage to collect coverage
of the register and memory space addressed by the software
functions.

V. CHALLENGES AND FUTURE DEVELOPMENT

The biggest challenge of this co-verification is debugging
errors in the C code that are related to pointer handling, which
has the effect of crashing the simulator. Since the simulator
and the software are running in the same memory space,
segmentation fault in the software can bring down the
simulator and bad pointer assignments can corrupt memory in
the simulator kernel or Specman engine which often results in a
core dump. Pointer problems are the most common and most
nasty source of errors in C programming and it is both the
power and the weakness of the language. There is nothing
much the verifiers can do since the root cause of the problem is
bad C code. In our co-verification guidelines, we require that
the software team thoroughly tests their C code before
integrating with the hardware in co-verification. The use of
memory debugging tools, such as Valgrind, is advised to make
sure there is no memory problem in their code before releasing
their code over to the verification team.

The second challenge of this co-verification method is
debug turnaround time of the software C code. Since the C
code is compiled into SystemC, which is compiled and
statically linked to the RTL simulation snapshot during the
elaboration phase, we cannot fix the bugs in the C code in the
middle of simulation without going through the whole RTL
elaboration process. In the future, we plan to use dynamically
loaded shared library to resolve this problem. Instead of
statically linking the software C code into the SystemC
software bridge, we can compile the software C code into a
shared object. Then the SystemC software bridge can use the
Linux built-in dynamic linking loader library to dynamically
load the software shared object and obtain the address of the
symbols of the software functions at the beginning of the
simulation. If a bug is identifier in the C code during
simulation, the verifier can manually drop the loaded software
image, fix the C code and recompile the shared object, then
reload the software image without quitting the simulator.

In addition, the current implementation of the software
bridge for this co-verification method only supports Specman
based testbenches. We have plans to enhance the software
bridge to support this co-verification method for System
Verilog testbenches. However there are several technical
challenges we have to overcome to make the System Verilog
implementation a reality. Both Specman and System Verilog
support TLM port connection to SystemC under UVM, but

native TLM port binding can only support pass by value. One
alternative for the System Verilog implementation is giving up
the support of passing by reference and only supports the use of
pass by value in the function arguments. Another alternative is
using VPI (Verilog Procedural Interface) to manipulate
pointers of System Verilog objects directly in the software
bridge. Given that the problem of passing data type between
the System Verilog and C language boundary can be resolved,
we still have to implement the equivalent of the Specman
utilities library for automated type conversion in System
Verilog for the software function wrapper generation script. In
theory it is feasible to port this co-verification method to
System Verilog, however it requires more research to prove its
practicality.

VI. CONCLUSION

In this paper, the authors developed an alternative
methodology for hardware software co-verification using
standard verification language and industry interface standards.
There are many advantages of this co-verification method
including the low cost, the fast execution speed, the transparent
visibility in debug and the ease of use when setting up the
environment. This allows our existing Specman testbench
evolve into a hardware software co-verification platform. The
software team gain early access to the hardware design in order
to test the software and hardware integration issues and the
verification team has more accurate stimulus generated from
software operation for testing the RTL code.

ACKNOWLEDGMENT

Thanks to Sebastien Regimbal, Grant Brydon and Gordon
Bastien for their contributions in the development of the
software bridge.

REFERENCES

[1] A. Jason, “HW/SW co-verification basics,” EE Times, 2011.

[2] D. Rittman, “Hardware/Software Co-verificatoin & Co-Simulation,”
2004.

[3] Cadence, “Palladium XP (UXE) User Guide.”, 2010

[4] Cadence, “Incisive Software Extension (ISX) User Guide.”, 2011

[5] A. Freitas, “Hardware/Software Co-Verification Using the System
Verilog DPI,” DASS, 2007.

[6] V.G. Kumar, “A New Methodology for Hardware Software Co-
verification,” IPSOC, 2006.

[7] E. Zwingenberger, “A Simple New Approach to Hardware Software Co-
Verification,” EE Times, 2007.

[8] Cadence, “Universal Verification Methodology (UVM) Multi-Language
Methodology”, 2010

[9] Cadence, “Specman Usage adn Concepts Guide for e Testbenches.”,
2010

[10] Cadence, “Specman Integrators Guide.”, 2010

