
A Methodology to Port a Complex Multi-

Language Design and Testbench for

Simulation Acceleration

Horace Chan
PMC

8555 Baxter Place,

Burnaby, BC, Canada,

V5A 4V7, 604-415-6000

Brian Vandegriend

PMC

8555 Baxter Place,

Burnaby, BC, Canada,

V5A 4V7, 604-415-6000

Efrat Shneydor
Cadence Design Systems, Inc.

2655 Seely Avenue

San Jose, CA 95134

408-943-1234

Abstract- PMC's verification teams started exploring simulation acceleration (SA) with hardware-assisted verification

in 2011, as one of the early adopters of UVM Acceleration. They undertook this effort because of the complexity and size

of their mixed-language designs, which were coded in SystemVerilog, Verilog, and VHDL, and stimulated using state-of-

the-art testbenches coded in UVM-e.

A few years later, the task of porting a design and testbench from simulation to acceleration evolved into a

methodology and is now re-used across multiple verification teams. Finally, PMC has achieved the holy grail of SA,

conquering the most complex challenges of SA verification including: 1) Speed – achieving 67x speed up, 2) Time to First

Test – taking only a month to port a verification environment to run in acceleration mode, 3) Consistent – Running the

same tests with RTL and an accelerated DUT, producing the same results.

This methodology exploits essential capabilities of the tools in use, and production proven procedures. This paper

outlines a step-by-step guide to port an existing UVM-e testbench to SA. The verification user community can use this

paper as a template to plan their migration from simulation to hardware acceleration.

I. INTRODUCTION

RTL simulation has been the major work horse since the dawn of verification. However, as the designs continue

to follow Moore’ law, long simulation time is one of the major bottlenecks in verification. Ultra long testcases

running over several days or even weeks impact the productivity of the verification team. Many technologies have

been introduced to speed up simulation times, and the one that deliveries the most speed up is the use of hardware

acceleration box (the box). Hardware acceleration technology has been around for almost a decade. It started out as

a niche technology trying to replace custom FPGA emulation boards and today it has become one of the essential

verification tools. The top three EDA vendors have their propriety hardware acceleration solutions, and all of them

deliver the performance of tens of thousands if not millions times speed up compared to plain old RTL simulation.

Traditionally, verification teams use the hardware acceleration box in in-circuit emulation (ICE) mode. In ICE

mode, the box behaves like a FPGA emulation board, where the design is compiled into the box and the traffic

stimulus is generated by using actual equipment or testers connecting to the box via the speed bridge. ICE-mode

can run up to almost at-speed as running the actual design in the silicon. It is ideal for software/firmware testing or

performance stress tests. However, due to the limitation of the speed bridge, ICE mode lacks fine control of the

traffic stimulus, and it has poor observability in the traffic monitor to debug low level RTL bugs.

To address this problem, the next evolution of hardware acceleration comes in the form of the embedded

testbench. Both the design and a synthesizable testbench are compiled into the box; traffic stimulus is generated

from the embedded testbench running inside the box instead coming from the speed bridge. The compiled design

and testbench run as fast as ICE-mode, and the embedded testbench provides full control over the traffic stimulus.

However, synthesizable testbenches are very difficult and time consuming to implement, and it is often as

complicated, if not more, as the RTL itself. Embedded testbenches also lack the convenience and ease of use of

being implemented using a high level verification languages (HVL), such as Specman e or SystemVerilog (SV).

Writing embedded testbench is like writing a piece of RTL to test another piece of RTL. Finally, the next logical

evolution in hardware acceleration is simulation acceleration (SA) which combines the best of the both worlds, the

speed of the hardware accelerator and the usability of a HVL testbench. In SA mode, the design is compiled and run

inside the box, while the HVL testbench is running in the simulator connected to the box. In SA mode, the design is

running much faster than the testbench that its run time is negligible compared to the run time of the testbench. The

simulation speed is no longer limited by the speed of the RTL simulation; the simulation runs as fast as the testbench

runs plus a small transaction overhead from communication between the box and the testbench. In short, SA mode

is like running the RTL simulation in a superfast computer.

PMC is one of the early adopters of SA. We started experimenting with SA in 2011 when Cadence first

announced SA support in their Palladium platform. For a trial project, we selected a complex, mixed-language RTL

design (Verilog, VHDL and SystemVerilog) coupled with a state-of-the-art UVMe Specman testbench that supports

transaction level processing. The initial bring-up of this design/testbench in Palladium running in SA mode took us

over a year. Enhancing the testbench to run in SA mode is a very steep learning curve; it involves an in-depth

knowledge of HVL, writing synthesizable RTL code and low-level C language programming. Additionally, a

relatively new tool chain presented an additional hurdle. At the end, we demonstrated a 40x speed up for a 26M

gates design with heavily patched RTL [1]. Back then, porting a testbench to SA seemed like black magic, the

process wasn’t scalable and difficult to transfer the process to other projects. Flash forward to 2014, after several

iterations of the tool and a few more designs ported to run in SA mode, we have refined our methodology on porting

an existing testbench to run in SA mode. The time it takes to get a testbench up and running in SA mode is

drastically reduced from over a year to just a few months or even merely a couple of weeks. Finally SA is ready for

widespread adoption and it is easy to pick up by any verification team by using our methodology.

In this paper, we are presenting a methodology of porting an existing UVM-e testbench to run in Palladium SA.

This paper is structured as a step by step guide on how to migrate the testbench. The first section discusses the

prerequisite of the testbench, what types of testcases are best suited to run in SA. The following sections go over

types of simulations it takes to debug the migration, the RTL compilation flow, the testbench enhancements, and

regression management strategy respectively. We shared lessons learnt and pitfalls users should be aware of.

Finally, the paper presents some benchmark results for reference, followed by a brief discussion on the future

development of this methodology and concluding remarks. The verification user community can use this paper as a

template to plan their migration from simulation to hardware acceleration.

II. TESTBENCH PREREQUISITES

Not every testbench or testcase is suitable to run in SA mode. Previous papers [2][3][4] highlight some important

points and example calculation to help users determine whether a testbench is suitable to run in SA mode. In this

paper, we are focusing on porting the testbench for transaction base acceleration running in blocking mode, where

the testbench and the hardware are running alternately. We have experimented with signal based acceleration in the

very beginning of the trial; although it sounds like the logical step to start hardware acceleration, it turned out to be a

dead end. Signal based acceleration could not deliver the simulation speed up performance to justify the cost of the

hardware accelerator. We also investigated using non-blocking mode where time advances concurrently instead of

alternately for both the software and hardware domains. In theory, non-blocking mode could deliver the best

performance, since the testbench and the hardware are running in parallel, but it changes the behavior of the

simulation testbench which we saw as undesirable.

The primary performance bottleneck of SA is the execution time of the testbench. It is recommended to profile a

typical simulation run and make sure the testbench uses less than 2-3% of the total CPU time in order to achieve a

meaningful speed up in SA mode. Smaller design tends to yield higher testbench CPU usage, so they are not

suitable for SA in general. Testbenches that are structured to use excessive interactions between the testbench and

the DUT, such as continuous monitoring of RTL signals on every clock, are not well suited for SA acceleration.

The user should investigate whether those interaction are required for the testcases targeted for SA mode and see

whether those interactions can be disabled or minimized in the testbench. Some testbench CPU usage is simply an

artifact of poor coding style, and thus the user should optimize their code to yield better simulation performance.

Techniques for testbench optimization is outside the scope of this paper; user can refer to [5][6] for more details.

Another potential performance bottleneck is the synchronization and data transfer between the testbench and the

box, but its performance impact is relatively low compared to the CPU runtime of the testbench and the context

switch overhead between software and hardware. The testbench is running on a host simulator which is directly

connected to the box by an ultra-high bandwidth cable. The throughput of the cable is very high; it is rarely a

bottleneck when transferring big chunks of data between the testbench and the box. Therefore as long as the traffic

stimulus can be generated by the testbench without taking up too many CPU cycles, there is no need to generate the

traffic stimulus form a synthesizable BFM inside the box. Moreover, writing a synthesizable BFM for data

generation has the same challenges as writing an embedded testbench, which is complicated and time consuming to

write. It is more productivity to reuse the traffic generator VIP from the simulation testbench given that the traffic

generators support transaction level processing. The synthesizable BFM and collector inside the box simply act as

dumb pipes to transfer data between the testbench and the box, and most of the data processing reuses existing code

in the testbench.

The last potential performance bottleneck is the time it takes to download the snapshot into the box and to upload

the waveforms at the end of simulation. For a very short testcase, the download and upload overhead may exceed

the testcase execution time, which results in deceleration instead of acceleration. The ideal testcase candidate for SA

should have a long run time, with long periods of minimal interaction between the testbench and the design other

than sending and receiving bulk traffic with occasional event based signal monitoring. It is fine for the testcase to

have heavy interaction between the testbench and the box in a given test phase that contributes to a very small

percentage of the total simulation run time. The speed up factor during that test phase will slow down significantly,

but the testcase still maintains a decent overall speed up.

III. TYPES OF SIMULATIONS

The migration of a simulation testbench to run in SA mode is a multiple step process. It is almost impossible for

anyone to implement all the required testbench enhancements and the have the SA simulation working the first time

it is brought up in the box. Due to the high cost of the hardware accelerator, it is often shared among many

verification teams; thus, it is not economical to lock down domains in the box to debug SA integration problem

interactively in live sessions. It is easier to break down the migration process into four phases using different types

of simulations; each has its strength to identify different kinds of problems.

1) Normal simulation. It is recommended to use the same simulator from the same vendor of the hardware

accelerator. There are many subtle differences in how the RTL behaves in different simulators; it is hard to

guarantee tools from different venders will interoperate correctly. First, select a testcase as the target of the

first bring up. This testcase should not be too long, which allows many quick debug iterations, but it should

not be too short so it can provide some interesting performance metrics. This testcase should avoid using

backdoor register accesses and disable all unnecessary interaction between the testbench and the DUT. For

this step, run the testcase until the end of the simulation, save the seed and the log file, which will be used as

the golden reference in the following phases. If it is not already done, the user should also run profiling to

identify and fix performance bottle neck in the testbench.

2) SA_SIM simulation. This type of simulation is used to debug errors in the SCEMI pipe and DPI integration

of the testbench. The DUT is still running in the RTL simulator, but the testbench is fully enhanced to run in

SA mode. The testbench should not consume any simulation time, it should identify and disable all external

port bindings and be recompiled with a clean stub file. Re-run the selected testcase with the saved seed and it

should have the same simulation result as the saved log file from previous phase. Identify and fix any

discrepancy in the simulation result, which is probably due to a mismatch in the behavior of the transaction

BFM and collector. Users can also rerun profiling to benchmark the performance of the transaction BFM and

collector. Usually the SA_SIM simulation runs slightly faster than normal simulation.

3) SA_SW simulation. This type of simulation uses the host simulator to run both the testbench and the DUT.

The DUT is synthesized to the binary format of the hardware accelerator and is simulated using a model of

the hardware accelerator which runs inside the host simulator. Again, rerun the selected testcase with the

saved seed and compare the simulation results. This step is to identify any potential bugs in the tool flow that

synthesized the RTL into the box. Usually SA_SW simulation is somewhat slower than normal simulation

due to the overhead of the software model of the box. Since the launch command is identical to the actual SA

simulation, it is also used to debug the shell script environment that runs the testcase.

4) SA_HW simulation. The testbench is running in the host simulator and the DUT is running in the box. First,

run SA_HW in tbrun mode. Here, the box is running in lock step with the SA_SW simulation which flags any

potential mismatches between the software model of the box and the actual hardware implementation of the

box. Finally, run the actual SA simulation using SA_HW in normal run mode, where user can measure and

benchmark the speed up factor of simulation acceleration.

IV. COMPILE THE RTL FOR THE HARDWARE ACCELERATOR

Based on our experience, the most challenging part of the SA migration process is compiling a complex mixed

language design implemented in Verilog, VHDL and SystemVerilog into the hardware accelerator box. Although

all the compilation tools are from the same vendor, the SA tool chain is not exactly the same as the commonly used

tool chain in frontend simulation and backend RTL synthesis. The Verilog, VHDL and SV parser in the SA tool

chain may have a slightly different implementation and have a different interpretation of certain syntax of the code,

which results in mismatching behavior between SA and normal simulation. The frontend simulation tool chain and

backend RTL synthesis tool chain are more mature comparing to the new SA tool chain. It is highly recommended

that the user starts a trial RTL compilation targeting the accelerator early in the project, before spending

considerable efforts in testbench enhancement to support SA. If the RTL cannot compile for the box, then there is

zero speed up. Although there are occasional compilation issues with the SA tool chain, there are always

workarounds available to patch the RTL code to avoid those issues. However, we do not recommend that the user

branches off from the original RTL code and maintain a patch copy of the code just for SA. It will be a maintenance

nightmare to keep track of the patches and on-going changes in the design. Moreover, it introduces a verification

gap as we cannot guarantee that the patched code behaves exactly the same as the taped-out version of the RTL.

When the user encounters a tool issues, it is recommended that the user first confirms that the same piece of code

works fine in the frontend and backend tool chain, then the user should report the problem to the tool vender. If

possible, the user should also send a tar ball of code snippet to help the tool vender recreate the error for internal

debug. Once the vender is able to confirm the tool bug, usually it takes a few days for them to distribute a new

patch of the SA tool chain to fix the problem.

Given that there is no tool problems, getting the design to compile for SA is fairly straight forward. The SA

compilation flow can reuse most of the compile scripts and reuse components from the ICE compilation flow. We

recommend that the user uses the normal simulation workspace for SA compilation instead of creating separate

workspaces and vaults. There are many benefits of using the same workspace, which includes incorporating design

changes, since there is only a single RTL code base to update and debug. The user can launch a testcase in either

normal simulation or SA mode from the same workspace and use the most appropriate simulation type to debug

RTL problems. Assuming RTL compile scripts for normal simulation is readily available; compiling the RTL for

SA requires the following steps: (our example is illustrated using the Palladium compile flow)

1) Define the path to the compiled library for SA. (Generate a libmaprc file from the existing cds.lib file). It is

recommended to put the SA compile library in the same path as the simulation compile library. This allows

easier cleanup of the workspace when checking-out updates of the latest RTL changes and it also allows

partially recompile of the design by cleaning up some of the compiled libraries.

2) Generate synthesizable RAM models for all behavioral RAM models in the design. This is the same RAM

generation script used in ICE mode.

3) Identify all non-synthesizable common behavioral components in the design, such as RAM models,

DesignWare or gtech libraries, and then swap in a synthesizable version. There are many ways to swap in the

synthesizable code, we recommend using SV configuration to determine the binding at the elaboration phase

for different snapshots. This allows both non-synthesizable and synthesizable versions of the compiled

design to co-exist in the same workspace. The user will compile all the synthesizable version of the code to

be swapped into an accel_lib library and set it as the default binding in the SV configuration file with

config accel_top;

design work_lib.top;

default liblist accel_lib;

end config

4) Parse the simulation compile scripts; replace all references of the simulator compiler with the SA compiler.

(Replace ncvhdl with vhan, ncvlog with vlan) and add +rtlCommentPragma and any other

synthesize_on/off pragma to compile the synthesizable version of the code.

5) After the RTL code is analyzed, call the synthesizer (ixcom) to synthesize the RTL code into the accelerator

binary. Since everything in the design should be synthesizable and target to run in the hardware, it is more

convenient to force the tool to synthesize everything into the box. (–rtlchk off option in ixcom). It avoids

the synthesizer to guess which module is synthesizable and which one should runs in software module, as this

process is prone to error and may end up with having some module running in software instead of hardware,

which will heavily impact the SA performance. Instead, the tool simply reports an error when it encounters

non-synthesizable modules. This step may require a few iterations to clean up all the non-synthesizable code

in the design. Unlike the binary for ICE mode, the SA binary are not limited by the physical location of the

speed bridge. Thus, it can run in any domains or boards in the box. The user should specify the design to

target contiguous domains in the box and enable the symmetric boards option to allow the design to be

deployed across any domain. If the SA binary generation is successful, the user can find out how fast the

design runs and the number of domains required from log files, like

INFO (db2util-1067): This design is scheduled in 400 steps.

INFO (qt2dadb-1086): Maximum emulator operating speed is 1238 kHz.

...

Info [FLOW_SUCCESS]

Successfully built target (xeCompile)

...

...

00 ET5NLOPT | Assuming instruction usage 80%, the design requires at least 6 domains.

V. TESTBENCH ENHANCEMENT

Provided that the testbench already meets the prerequisites described in section 2, there are not many testbench

specific changes required to support SA mode, other than extending the VIP to support TBA mode and hook up the

reuse testbench controller (TB_CTRL) module that facilitates the interaction between the testbench and the box.

The VIP components and the TB_CTRL unit are reuse components that can be shared among different verification

projects. Once they are already created, it significantly lowers the barrier to port additional testbenches to support

SA mode. In fact, in our SA methodology, project specified code to support SA mode in each specific testbench is

limited to a single e file with just a few dozen lines of code. We also highly recommend maintaining the same code

base for both normal simulation and SA simulation. Thanks to Specman’s unique aspect oriented programming

(AOP) ability, which allows different implementation of the same function API based on the aspect configuration at

run time, we can use the UVM sequence code verbatim in SA mode. The exact same testcase importing the exact

same UVM sequences runs on both normal simulation and SA and will generate the same simulation result with the

same seed. The testbench supports running the testcase in two different aspects, one for normal simulation and one

for SA mode. The user has to refactor the code to consolidate external port binding and agent type under the normal

simulation aspect, so none of the external ports is bound when running in the SA aspect. The following is an

example of how to define the two aspects:

type uvm_abstraction_t : [UVM_SIGNAL, UVM_ACCEL];

 extend any_uint {

uvm_abstraction : uvm_abstraction_t;

// pass the aspect down the unit tree

keep uvm_abstraction == get_parent_unit().uvm_abstraction;

 };

// disable the external binding in UVM_ACCEL

extend UVM_SIGNAL <unit name> {

 keep agent() == “NCSV”;

keep bind(<signal port>, external);

};

extend UVM_ACCEL <unit name> {

keep agent() == “”;

keep bind(<signal port>, empty);

 };

Enhancing a 3
rd

 party VIP to support SA mode is probably the biggest challenge in migration. Unless the VIP

comes directly from the vendor of the hardware accelerator, it is very hard to find ready-made accelerable VIP in the

market. For in-house reuse VIP and testbench specific functions, [7] provides a detail description on different

communication methods between the testbench and the box. We are not going covering the implementation of those

methods in this paper; please refer to the corresponding document for detailed information. Instead, we include a

brief discussion on how we use each of those communication methods in our SA methodology; users are welcome to

use the information for reference. Please keep in mind that there is no “one size fits all” solution in selecting which

communication method to use as it highly depends on the characteristics of the targeted application.

1) SCE-MI pipe. This is the preferred method to transfer high data rate traffic between the testbench and the

box. The SCE-MI pipe proxy built into the SA tool supports auxiliary functions, such as query queue status,

flush queue, etc. The full Accellera SCE-MI specification is very complicated and it is probably overkill for

VIP TBA mode operation. Here is an analogy to help the user to understand SCE-MI pipe concept: On the e

side, the SCE-MI is like a blocking TLM get or put port. It supports auto pack/unpack the physical field of a

struct, the struct is packed into a 2 dimension byte array with the size of the pipe width X pipe depth. On the

SV side, it is like one side of a RTL FIFO module. On each clock cycle, the TX side reads one word with the

size of the pipe width from the FIFO, and the RX side writes one word into the FIFO.

2) e/SV DPI interface. This is the preferred method to implement a command/control interface in the testbench

and VIP. It works like a method port, allowing e to call a SV function and vice versa. It is required to write

some C glue to stitch the e/SV DPI call. The DPI interface supports non-TCM function calls only, however

TCM calls can be implemented using two separate DPI calls under the hood, first setup the forward call from

e to SV, then wait in the box until the timer expires, then trigger a backwards call from SV to e. Any DPI call

will trigger a context swap between the testbench and the box; consequently, too frequent DPI calls will

impact performance.

3) MARG (direct memory copy) interface. This is the preferred method to transfer a memory block between the

testbench and the box in zero time. SCE-MI pipes are implemented using MARG under the hood. MARG

provides raw memory access to the box, it is the fastest communication method, but it does not provide any

helper function to facility the memory transfer. It is good for one-off deposits or read back a value from the

deposit. It is also the mechanism to implement custom pipes if the SCE-MI pipe does not meet the VIP

requirement. It works on any synthesizable Verilog array or register type. For Verilog array, users have to

declare a piece of memory in the testbench with the same size of the memory array in the box. For register

types, users have to explicitly export the register signal in the HDL code. In the testbench, the user has to

facilitate when to wake up the testbench and call the MARG memory copy methods to transfer the content of

one memory to another.

4) Tcl deposit/force/value. Believe it or not, Specman can still use simulator_command()to issue simulator tcl

command in SA mode. The testbench can still use tcl deposit/force/value commands to communicate with

the DUT. This method is very slow, but it is a very handy debug method as a last resort, since Specman can

extend the testcase and inject additional code without recompiling the SA snapshot or even without restarting

the simulator.

The TB_CTRL module is a reuse component that encapsulates commonly used functions to enable rapid

testbench migration in SA mode. It facilitates the interaction between the testbench and the box; it has the following

major features implemented using the DPI interface:

1) Emit a Specman tick event periodically based upon a hardware clock running in the box. It is used to wake

up the testbench and move the time consuming sequences forward in simulation time.

2) Provides a wait_delay() method replacing the standard Specman wait delay statament. In

UVM_SIGNAL the wait_delay() is just a wrapper for wait delay, but in UVM_ACCEL, wait_delay()

converts the time notation into counting the number of elapsed tick events or the nearest HW clock cycles in

the box depending on the timer granularity configuration.

3) Provides general purpose output (GPO) pins to drive a simple repeating pattern to a pin using the TB_CTRL

module in the box via a method call from the testbench. Since there is no external signal port binding in the

testbench in SA mode, any output to external signal port should be rerouted through the GPO pins of the

TB_CTRL module. The number of the GPO pins is configured by SV parameter of the TB_CTRL module.

The testbench reset in SA mode is also implemented using the GPO pins.

4) Provides general purpose input (GPI) pins that will emit an event to the testbench if there is any change to the

pin and/or the new value matches the predefined mask value. Any input from external event port should be

rerouted through the GPI pins of the TB_CTRL module. The event will cause context swap between the box

and the testbench and can be used to trigger testbench function or UVM sequence like normal simulation.

Interrupt monitoring of the DUT is implemented using the GPI pins. In normal simulation, the testbench may

monitor all interrupt changes, but in SA mode, the interrupt should be configured to flag only serious design

failures that require intervention from the testbench.

Very often, many verifiers work on the testbench, writing testcases and UVM sequences. The person who is

responsible for the testbench migration may not know all instances of code violation for SA, such as using tick

notation, orphaned external bindings and wait delay statements. We have implemented the following debug utility

to help the user inspect the testbench code for code violation using Specman macros and the reflective interface.

define <delay_override'action> "wait delay(<exp>)" as {

 outf("WARNING wait delay at %s\n", source_location());

};

define <force_override'action> "force <any>" as {

 outf("WARNING force at %s\n", source_location());

};

define <tick_read_override'exp> "'<any>'" as {

 outf("WARNING tick read at %s\n", source_location());

};

define <tick_write_override'action> "'<lval'any>'=<rval'any>" as {

 outf("WARNING tick write at %s\n", source_location());

};

extend any_unit {

 check_generation() is also {

 if (agent() != "") {

 outf(WARNING agent() at %s is not empty\n", e_path());

 };

 var s : rf_struct = rf_manager.get_struct_of_instance(me);

 var f_list : list of rf_field = s.get_fields();

 for each (f) in f_list {

 var t : rf_type = f.get_type();

 if (t.get_qualified_name() == "pm_mtf::uvm_abstraction_level_t") {

 var v :int = f.get_value(me).get_value().unsafe();

 if (t.as_a(rf_enum).get_item_by_value(v).get_name() != "UVM_ACCEL") {

 outf("WARNING uvm_abstraction_level_t at %s.%s is not UVM_ACCEL\n",

 e_path(), f.get_name());

 };

 };

 };

 };

};

extend sys {

 check_generation() is also {

 for each (p) in sys.get_ports_recursively() {

 if bind(p, external) {

 outf("WARNING Port %s is bound external\n", p.e_path());

 };

 };

 };

};

VI. REGRESSION MANAGEMENT

Launching testcases in normal simulation and in SA mode uses the exact same interface, the only difference is the

simulation snapshot loaded into ncsim and the targeted machine to run the job. Our regression manager (vManager)

is used to facilitate regression runs in SA mode, just like the regressions running in normal simulation. Due to the

overhead of downloading the design into the box, it is recommended to group all testcases using the same snapshot

into one regression session. The pre session script should reserve the domains required by the design in the box,

then it should use the keep host alive feature of the tool to keep the design in the box between SA simulation runs to

avoid having to download the design into the box again. The post session script should free the reserved domains

once the regression suite is finished.

When a testcase fails in the regression suite, even though recreating the failure using SA simulation is

considerably faster than normal simulation, it is still more convenient if the regression manager re-launches the

failed testcase automatically and has the simulation session stop right before the failure point, waiting for the verifier

to debug at their next opportunity. However there is one concern in auto re-launching for SA simulation, the

hardware accelerator has a very high cost, and thus it is unwise to leave some domains sitting idle for the whole

night waiting for the simulation to be debugged. When the simulation session stops at the failure point, it should

hot-swap from SA_HW mode into SA_SW mode and release the domains, thus allowing other testcases to utilize

these limited resource in the box.

VII. BENCHMARK

Table 1 presents some benchmark results for reference. Project A was the initial trial run, we spent over a year

learning the fundamental of SA and struggling with various tool problems. Project B was the first project to utilize

the lessons we have learnt in project A, where we refined our SA methodology and prepared it for wide adoption.

The schedule for project B includes the time to build all the SA compilation scripts, TB_CTRL reuse components,

porting two additional VIP to support SA and deal with occasional tool problems. Project C applied the matured SA

methodology; it neither has any new VIP SA mode development nor encounters any tool problems.
TABLE I - Benchmark Results

 Project A (2012) Project B (2014) Project C (2014)

Design size (in Mgates) 26 38 50

Domains used 6 6 8

Speedup factor 40x 67x 52x

Migration schedule 1 year plus 3 months 3 weeks

VIII. FUTURE DEVELOPMENT

One of the biggest drawbacks of SA is that it does not support checkpoint save and restore like normal simulation.

Saving a simulation checkpoint and then restoring it to the closest simulation time before the point of failure

drastically decreases the debug turnaround time. No matter how fast SA runs, it is always slower than simply

reloading a checkpoint saved right before the point of failure. We will work with the tool vendor to implement

checkpoint save and restore in the next evolution of the SA methodology.

IX. CONCLUSION

Compared to the benchmark results in [2][3], our speed up factors do not seem very impressive. We focused our

efforts in bringing up SA mode and put it to use in the shortest period of time. We did not focus on optimizing the

testbench to deliver the best possible speed up factor, other than fixing some obvious performance bottleneck due to

poor coding, such as list operations that keep allocating and releasing memory. This is a calculated trade off based

on the expected use model of SA. No matter how hard we optimize the testbench, SA can never run nearly as fast as

ICE mode. For heavy duty simulations that require ultra-long simulation times, one should always stay with ICE

mode. The advantage of SA mode is to shorten the normal simulation time while keeping the flexibility of the HVL

testbench. As long as the simulation runs fast enough, like a simulation finishes within an hour, it does not provide

much extra value to squeeze the simulation time down to thirty minutes. We have done some internal ROI

calculation, factoring in the CPU operation cost and license fee of normal simulation. We found that the breakeven

point for SA is around 30-40x depending on the discount of the license fee and the lease contract of the hardware

accelerator. As long as the speed up yields a positive ROI, it is a sound investment to use SA mode. On top of the

calculated ROI based on the raw simulation throughput, there are other intangible benefits like decreased debug

turnaround time and increased productivity of the verification team.

ACKNOWLEDGMENT

I would like to thank my colleagues in PMC’s CAD department and the helpful FAEs in Cadence for their support

in bring up the SA simulation environment.

REFERENCES
[1] H. Chan, J. Huang and D. Allen, “Functional Verificaiton of next Generation IC’s with Next Generation Tools”, CDNLive, 2012

[2] S.Kumar, G.Kumar, P. Kulkarni and V. Rao, “Accelerating UVM Testbenches to Achieve 100x Simulation Performance”, CDNLive, 2013
[3] V. Rao, K. Kumar, V. Verma, G. Kumar, “Using Simulation Acceleration to achieve 100x performance improvement with UVM based

testbenches”, DVCon India Proceedings, 2014

[4] K.A. Meade, “UVM Testbench Considerations for Acceleration”, DVCon Proceedings, 2014
[5] E. Shneydor, “Performance-Aware e Coding Guidelines Series Part 1-5”, Cadence blog (http://community.cadence.com), 2009

[6] F.Kampf, J.Sprague, and A.Shere, “Yikes! Why is My SystemVerilog Testbench So Sloooow?” DVCon Proceedings, 2012
[7] S. Aggarwal, “Boost Efficiency and Performance of Simulation Acceleration Through New Rapid Adoption”, Cadence blog

(http://community.cadence.com), 2014

http://community.cadence.com/
http://community.cadence.com/

