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Abstract—Given the size and complexity of modern ASICs/SoC, 

coupled with their tight project schedule, it is impractical to 

build a complete system or chip level verification environment 

from scratch.  Instead, in order to increase productivity, 

maximizing reuse of existing verification components seamlessly 

with the project has become one of the biggest opportunities to 

increase verification efficiency.  In this paper, we present a 

testbench framework to maximize vertical reuse within a project.  

The framework presented here has been proven on the 

ground-up development of a 200M gates ASIC.  In our 

framework, the system testbench is built in a hierarchical 

manner by recursively importing lower level block or module 

testbenches.  From the lowest level to the highest level, all the 

testbenches are designed to support plug-and-play integration.  

Verification engineers can hook up several lower level 

testbenches and turn them into a higher level testbench.  The 

system testbench inherits the device configuration sequences, 

traffic generation sequences, checkers and monitors from the 

imported module testbenches without duplication of effort.  As 

a result, vertical reuse shortens the development time of the 

system testbench, improves the quality of testbench code and 

allows fast bring up during system integration. 
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System UVC 

I.  INTRODUCTION 

Building system or chip level testbenches from the 
ground-up is a feasible undertaking for devices up to several 
million gates.  However, past devices of this size (1-10M 
gates) now form subsystems of today’s devices with 100 
million gates or more.  Thus a new approach is required to 
achieve the productivity gains required in order to avoid 
applying the same scale factor (10x) to the number of 
verification engineers.  Tackling devices of this magnitude 
(100M+ gates) must involve using the divide and conquer 
strategy, divide the device into smaller subsystems, and then 
further divide the subsystems into even smaller modules or 
blocks to limit the scope of verification at each level.  A 
module testbench is built to thoroughly verify each and every 
module feature.  A subsystem testbench is built to verify 
subsystem level features and the interaction among the 
modules within the subsystem.  Finally, a system testbench is 
built to verify the interactions between the subsystems.  Due 
to schedule pressures, resources and budget limitations, it is 
not feasible to build every testbench from scratch.  Therefore, 
it is always desirable to share and reuse code from one 
testbench to another in order to minimize the development 

effort and improve the quality of the testbench by using proven 
code instead of duplicating some of the effort by developing 
new code. 

With the introduction of UVM the industry has 
standardized on a common testbench architecture, which 
enables easy reuse of in-house or 3

rd
 party verification IP (VIP) 

and individual testbench components such as data generators 
and receivers, traffic and configuration sequences, protocol 
checkers and coverage models, scoreboards, etc.  In the 
previous project, we had hoped the UVM architecture would 
have helped us facilitate module to system level reuse.  
However, we found that the current UVM guidelines lacked 
the framework to support seamless plug-and-play integration 
from module testbenches to the system testbench.  In the 
previous project, verification engineers attempted to reuse 
components, such as sequences, checkers and monitors from 
model and testbenches in the system testbench directly.  In 
the end though, this approach failed for the following reasons: 
(1) Code Maintenance: the code in module testbenches is 
designed for module level testing and tends to evolve over 
time with little consideration for impact in the system level 
testbench.  As a result, system verification engineers wasted 
significant amount of time trying to integrate new releases of 
the lower level testbenches. (2) Debug was a challenge: the 
module and subsystem RTL often went through many changes 
during the project and gradually matured.  The 
module/subsystem level verification engineers addressed those 
changes in their testbenches but sometimes failed to 
communicate the necessary changes to the system verification 
engineers.  As a result, the system verification engineers 
wasted a lot of time debugging failed testcases that turned out 
to be non-issues. (3) Knowledge Transfer: When system 
verification engineers debugged a failed testcase it was 
difficult to get quick support from subsystem verification 
engineers since they were not familiar with the system 
testbench and they could not easily reproduce the failed 
scenario in subsystem testbench.  Thus, because of these 
reasons, the re-use model broke down and the verification 
engineers tended to duplicate code from the lower level 
testbench or merely used it as reference for a slightly different 
implementation at system level. 

The current device, on which this paper is based, is four 
times bigger than the previous project, with significantly more 
ground-up development.  Therefore, we had to streamline our 
vertical reuse strategy to minimize the time and effort spent by 
addressing the problems we had encountered in the past.  Our 
goal is to create a testbench framework that maximizes vertical 



reuse, thus achieving significant productivity gains.  The 
system level testbench can import subsystem level and module 
level testbenches directly and reuse all their individual 
components.  Changes in lower level testbenches propagate 
automatically to the system level testbench.  The system 
testbench can export its configuration to lower level 
testbenches which allows the lower level verification engineers 
to recreate and debug failed test scenarios.  The testbench 
framework supports plug-and-play integration, so the system 
verification engineers can focus on testing system level issues 
without being overloaded by mundane operation details of the 
lower level testbenches. 

We surveyed existing papers and articles on vertical reuse 
to see what we can learn from other experiences.  In [1], 
Froechlich proposed a reusing scheme that supports turning an 
active agent into a passive agent and synchronizing traffic 
generators based on eRM. In [2], the author proposed a 
module-to-system reuse topology based on scoreboard 
chaining with internal monitors to provide extra debug support.  
In [3], the author of the article brought up some concerns 
regarding module to system reuse suggesting that the features 
in the module level environment is a superset of the features in 
the system level environment.  Thus the system testbench has 
to select wisely what to import from lower level testbenches.  
In [4], D’Onofrio outlined a reusable verification environment 
using multiple layers of highly configurable components with 
OVM.  This scheme is very similar to the system UVC 
architecture upon which we based our testbench framework.  
The above four papers gave us a good theoretical 
understanding of vertical reuse, but all of them lack practical 
applications and implementation examples. [5] and [6] fill in 
the missing information by summarizing the lessons learned 
from successful vertical reuse projects.  Both papers stressed 
the importance of using the testflow concept to co-ordinate the 
test execution among the lower level testbenches, which is also 
one of the key components in our vertical reuse testbench 
framework.  

Our goal is simply to design a solution to maximize 
vertical reuse within a project.  We applied the lessons 
learned from previous project and addressed the questions 
raised in the previous paragraphs to design our new testbench 
framework, which is implemented based on the latest version 
of the UVM e verification methodology.  During the 
development of our vertical reuse framework, we discovered 
some limitations and scalability issues of the existing UVM 
framework.  In order to overcome those limitations, we came 
up with three enhancements to the existing UVM framework 
to allow seamless integration of module testbenches into the 
system testbench. 

The paper is organized as follows: In section 2, we 
introduce the existing UVM framework for module to system 
reuse.  In section 3, we present our enhancements to the 
UVM framework in details.  In section 4, we will summarize 
the benefits of vertical reuse and provide some benchmarking 
results and outcome from our project.  In section 5, we 
outline the challenges of vertical reuse that we encountered 
during the project and recommend improvements from lessons 
learned.  In the last section, we will briefly investigate the 
feasibility of porting our vertical reuse framework from UVM 
e to UVM SystemVerilog 

II. SYSTEM UVC ARCHITECTURE 

Our testbench framework is based on the UVM e System 
UVC architecture outlined in the UVM e User Guide [7].  
The System UVC architecture is a solid foundation for vertical 
reuse, in that it outlines vertical reuse topology and discusses 
how to configure lower level UVCs that are promoted into 
higher level UVCs.  It also has useful guidelines on how to 
implement and maintain the reuse code in the lower level 
UVC.  This section will briefly introduce the concept of 
vertical reuse.  Please refer to [7] for implementation details. 

Figure 1 shows a module testbench.  The terms “module 
testbench” and “system testbench” are relative.  A module 
UVC is a lower level UVC to a system level UVC, which itself 
may also be a module UVC relative to a higher level system 
UVC.  The device level or system testbench can be built 
hierarchically by importing one or more layers of module 
UVCs.  The module testbench is very similar to a typical 
UVM testbench with the following exceptions: (1) The master 
virtual sequence driver and register sequence driver exist 
outside of the module UVC, since in each verification 
environment, there is always one and only one master 
sequence to control the test flow.  The master virtual 
sequence driver and register sequence driver are linked to the 
test flow virtual sequence inside the module UVC using 
pointers. (2) The stimulus generation is separated into multiple 
layers: the interface layer directly drives the RTL signals, the 
protocol layers deal with transaction level processing, and the 
payload generation layer create the client payload.  Each 
layer is connected by TLM ports, so the system UVC can tap 
into any layer in the protocol stack without changing the 
structure of the imported module UVC. (3) The receiving 
traffic checker and monitor are also structured in a similar 
manner using TLM ports.  In addition to reused protocol 
checkers VIP UVCs, the module UVC has its own checkers 
and scoreboard that are accessible by the system UVC. 

Figure 2 shows a system UVC that imports two module 
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Figure 1.  Module UVC example 



UVCs as a simplified example.  There is no limitation to the 
numbers of module UVCs in a system UVC and the depth of 
module UVC levels in the actual implementation.  Our 
system testbench UVC is composed of 10 subsystem UVCs 
and some subsystem UVCs have 3-4 module UVCs, thus have 
a total depth of 3.  In the system testbench, the master virtual 
sequence driver is linked to the virtual sequence of the system 
UVC, which in turn links to the virtual sequence of the 
imported module UVCs.  The module UVC signal port 
interfaces that are connected to internal RTL signals are 
disabled by system UVC.  If the traffic generation in a 
module UVC depends on another module UVC, such as one 
protocol being encapsulated in another protocol, the system 
UVC will connect the TLM ports of associated protocol layers 
in the related module UVCs.  The module monitors and 
scoreboard are chained up to perform end-to-end checking.  
For interface UVCs found in the middle of the DUT, they are 
often disabled, but can be enabled as passive agents.  This 
allows the module level checkers and scoreboard to perform 
hop-by-hop checking, which helps the verification engineer to 
pin point the failure when debugging a failed system testcase. 

III.  ENHANCEMENTS TO SYSTEM UVC ARCHITECTURE 

Although the system UVM architecture is designed to 
address many concerts in vertical reuse, we found its structure 
is not flexible and sometimes inconvenient to implement.  
Therefore we proposed three enhancements to system UVC 

architecture to address the problems. 

A. TLM port router 

The system UVM architecture relies on the TLM port 
binding mechanism to transport sequence items and 
transaction records among module UVCs.  However there are 
some limitations in the UVM TLM port default binding 
mechanism such as: (1) the TLM transport port only supports 
one-to-one binding, (2) the TLM analysis port supports 
one-to-many binding, but the transaction record is always 
broadcast to all the input TLM ports, and (3) once the input 
and output TLM ports are bound, the binding is static.  The 
limitations impose a rigid restriction in how the system UVC 
imports and connects to lower level module UVCs.  In order 
to support flexible module UVC configuration during 
simulation, we developed a TLM port router to overcome the 
above limitations.  The system UVC connects the module 
UVC TLM ports to the TLM port routers instead of connecting 
up the ports directly.  With the help of the TLM port router, 
the system UVC can easily change the routing table to redirect 
or reconfigure the port connection during the simulation. 

The TLM port router is implemented using an e template 
which allows reuse of the same piece of code on various data 
types.  The router implements a table based generic routing 
algorithm using the port id and channel id.  The port id is 
determined by which TLM port interface the transaction comes 
in. The channel is fetched from within the transaction using a 
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Figure 2.  System UVC example 

 



built in extended method.  The source port id and channel id 
pair is used as the key to look up the destination port id and 
channel id from the routing table.  There could be more than 
one destination for each source if the transaction supports 
multicasting.  The router will update the transaction with the 
new channel id, duplicate the transaction in the case of 
multicasting and then send them out to the corresponding 
destination port(s).  The routing table look up algorithm is 
implemented using an e keyed list to speed up the search time.  
The following is an example of the header definition of a TLM 
analysis port router and the routing table. 

template unit port_router_u of (<type>) { 

    in_ports : list of in interface_port of    

               tlm_analysis of <type> is instance; 

    out_ports : list of out interface_port of 

                tlm_analysis of <type> is instance; 

 

    get_channel_id(tr : <type>) : uint is {};  

    set_channel_id(tr : <type>, cid : uint) is {} 

 

    routing_table : list of src_route_table_entry_s; 

}; 

 

struct dest_route_table_entry_s { 

    enable     : bool; 

    port_id    : uint; 

    channel_id : uint; 

}; 

 

struct src_route_table_entry_s { 

    enable       : bool; 

    port_id      : uint; 

    channel_id   : uint; 

    destinations : list of dest_route_table_entry_s; 

}; 

 

B. Common UVC Configuration Control 

When the module UVC is used at the module level 
testbench environment, the TLM ports between all the internal 
UVCs, monitors and scoreboards are connected and bound.  
However, once the TLM ports in the module UVC are bound, 
the system UVC cannot unbind the TLM ports without 
affecting the expected functionality of the module UVC.  One 
way to solve this problem is to leave out the binding 
constraints from the reuse portion of the module UVC 
altogether.  The system UVC has to reference the code in the 
module testbench to connect the internal components of the 
module UVC from scratch.  This solution is not productive 
since the system verification engineer often lacks the 
understanding in the internal connections of the module UVC.  
Since the system UVC often preserves most of the connections 
inside the module UVC, a better solution is to let the system 
UVCs disconnect the binding of unwanted connections, while 
keeping the rest intact.   

Each module UVC has a common configuration control 
table.  It stores all the binding options for each UVC and 
components inside the module UVC.  The table is organized 
using the RTL port as the first index and the number of 
protocol stack layers at the port as the second index.  The 
table keeps track of whether the UVC is enabled or disabled, 
whether the agent is active or passive, and whether the TLM 
port binding is connected or left open.  The module UVC has 
to obey the configuration control when generating the UVC 
instances or hooking up the TLM ports in the connect ports 

phase. The table is implemented using a keyed list to provide 
quick access to the configuration control information.  The 
following is an example of the common configuration control 
table. 

struct config_ctrl_s { 

    layer_name   : layer_t; 

    enable       : bool; 

    is_active    : uvm_active_passive_t; 

    bind_enable  : bool; 

}; 

 

struct port_config_ctrl_s { 

    port_name   : port_t; 

    layer_config : list of config_ctrl_s; 

}; 

 

extend uvm_env { 

    config_ctrl_table : list of port_config_ctrl_s; 

 

    get_uvc_enable(port:port_t, layer:layer_t)  

                  : bool is {}; 

    get_uvc_is_active(port:port_t, layer:layer_t)  

                  : uvm_active_passive_t is {}; 

    get_uvc_bind_enable(port:port_t, layer:layer_t)  

                  : uvm_active_passive_t is {}; 

 

    // usage examples 

    keep vip_env.agent.is_active == 

      get_uvc_is_active(PORT_AXI, LAYER_ENET);     

 

    connect_pointer() is also { 

        if (get_uvc_bind_enable(PORT_AXI, LAYER_ENET) { 

             vip_env.agent.tlm_out_port.connect( 

                  vip2_env.agent.tlm_in_port; 

             ); 

        }; 

    }; 

}; 

 

C. Common Test Flow Virtual Sequence 

The virtual sequence of each module UVC runs the 
configuration sequences and traffic generation sequences of 
the module UVC.  The system UVC needs a mechanism to 
co-ordinate and synchronizes the behavior of the imported 
module UVCs.  In our vertical reuse framework, all module 
UVC virtual sequences inherit a common testflow structure, 
which defines empty time consuming methods (TCM) known 
as testflow phases.  Each testflow phase is designated to carry 
out a specific function in the simulation.  The module level 
verification engineer extends the testflow phases and fills in 
the required actions for module level testing.  We decided not 
to use the UVMe testflow because it is too complicated, 
requires too much setup and prone to human error.  We 
implemented a simpler testflow with a single entry point at the 
highest level testbench.  The system UVC virtual sequence 
will execute all the testflow phases from all imported module 
UVC in lock step.  We defined three different kinds of 
testflow phases which represent three different ways to 
synchronize the module UVCs and system UVC: (1) 
Execution in serial, in which the testflow phase of one module 
UVC is executed to completion before moving to the same 
testflow phase in another module UVC.  For example, using 
this test phase type will ensure two module UVCs would not 
interleave their register accesses.  (2) Execution in parallel, in 
which the same testflow phases of all the module UVC are 
launched in parallel and the system UVC testflow phase will 



not move forward to the next testflow phase until all the 
module UVC testflow phases are completed.  For example, 
the testflow cannot proceed until all modules come out from 
reset.  (3) Execution in parallel with fire and forget, in which 
the same testflow phases of all the module UVC are launched 
in parallel, but the system UVC testflow phase moves on to the 
next testlflow phase once all the testflow phases in the module 
UVCs are launched.  For example, all modules start their 
traffic sequences with no need of co-ordination among the 
sequences. 

System verification engineer can use the three basic 
testflow phase kinds to build up a common testflow that fits 
the operation of the device with lots of flexibility.  Figure 3 
shows an example of the testflow phases used in our project: 

1) initialize the testbench environment.   

2) toggle the reset pin of the device 

3) wait until device ready is ready for accepting register 

access 

4) configure the testbench with procedure code  

5) configure the device with register or backdoor access 

6) start traffic generation 

7) wait for the device to stablize 

8) empty method hook for testcases to create stimulus 

9) end simulation gracefully if timeout period expires 

10) catch system errors and abort the simulation 

11) inititiate the termination of the traffic sequences 

12) wait for all the traffic sequences to be terminated 

13) wait for the clean traffic to flush out the device pipeline 

14) check the device status 

15) execute time consuming post simulation checks 

 

IV. BENEFITS AND RESULTS 

The most significant benefit of vertical reuse in verification 
is the engineering time saved.  In general, the development 
effort and the number of bugs in the testbench is proportional 
to the number of lines of code in the testbench.  The bigger 
the testbench, the more time spent in writing the testbench and 
catching testbench bugs instead of catching RTL bugs.  In 
table 1, we compare the size of the testbench in the current 
project against the previous project, which gave us a good 
approximation of the productivity gain.  With the help of our 
vertical reuse framework, we were able to verify more gates 
with fewer lines of code.  If we measure the code density, 
how many gates are verified by one line of code, we achieved 
a very impressive four times productivity increase in the 
current project.  

TABLE I.  VERITICAL REUSE STATISITC 

Statistic measure 
Previous 

Project  

Current 

project 
Changes 

Gates count 60M 200M +333% 

Total lines of code 575k 484k -16% 

System testbench lines of code 324k 215k -34% 

% system testbench in total code 56% 44% -22% 

Gates verified per line of code 104k 413k +400% 

 

The vertical reuse framework also saved us significant time 
in system integration, thus enabling us along with other 
methods [8] to meet a tight tape-out schedule.  In the previous 
project, it took 2-3 months to build the system level testbench.  
In addition, endless hours were spent in maintaining the 
system testbench code to keep up with all the wanted and 
unwanted changes in new module level testbench releases.   
In this project, since the module level testbench is designed to 
support plug-and-play integration, on average it takes 2-3 days 
to get one subsystem up and running.  The complete system 
level testbench was fully integrated in less than a month.  The 
verification engineer is able to easily populate the new code 
from the module testbench, and in most cases it will work in 
the system-level testbench unchanged.  In the previous 
project, system level verification engineers struggled greatly to 
understand how to stitch all the pieces of reuse code from 
lower level testbenches together.  In this project, it is much 
easier to develop system level testcase. Verification engineers 
can simply import two subsystem level testcases, constrain 
them to generate coherent traffic mode and finish a system 
level testcase in less than 20 lines of code.   
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Another benefit of our vertical reuse framework is the 
speeding up of system level debug turnaround time.  In the 
previous project, when a system verification engineer 
encountered a system level bug, it was hard to pull in 
subsystem verification engineers to debug the problem, since 
the subsystem verification engineers are not familiar with the 
system level testbench.  In this project, when we found a bug, 
we can enable the internal monitors of the module UVCs in 
passive mode and it provides us the same detail debug 
information as in the module level testbench.  The subsystem 
verification engineers do not need any ramp up time to help us 
analyze the problem because they are essentially working with 
their own testbench. 

V. CHALLENGES  

We have learned some lessons about vertical reuse from 
this project.  The first challenge is revision control of the 
reuse VIPs used across multiple module testbenches.  
Usually, more than one module UVC reuses the same VIP.  If 
the two module UVCs require different revisions of the same 
VIP, there will be a revision conflict at the system UVC level.  
We addressed this problem in several ways:  (1) freeze the 
development of the reuse VIP early in the project, (2) if 
changes to VIP are unavoidable, the new revision should be 
backward compatible with older revisions and (3) if backward 
compatibility cannot be maintained, the verification engineer 
who is in charge of system UVC integration should 
co-ordinate with module level verification engineers to update 
the reuse VIP revision used in all module UVCs at the same 
time. 

The second challenge was that poor quality code from the 
module UVCs impaired the system level testbench 
performance.  Junior verification engineers working in the 
module UVC sometimes implement inefficient code that 
consumes a lot of CPU cycles or causes memory leaks.  In 
module level testing, the simulation footprint is small and the 
simulation time is short, hence the problem of bad code never 
surfaces.  The system UVC inherits all the code of the 
module UVCs, including the bad code.  In system level 
environment, there are multiple instances of the module UVC 
and the simulation runs for a much longer time.  The bad 
code quickly degrades simulation performance and can 
sometimes even causes the simulation to crash.  As a 
guideline, the module UVC verification engineer should run 
profiling on their code to identify and fix any bad code.  
Experienced verification engineers should conduct a code 
review with junior verification engineers to catch any potential 
problems early in the development cycle.  For example, we 
had a 30% simulation performance improvement just by 
rewriting a dozen lines of bad code. 

VI. FUTURE DEVELOPMENT 

The vertical reuse framework outlined in this paper is 
implemented using UVMe.  Since UVM SystemVerilog (SV) 
is also the other popular verification methodology in the 
industry, we conducted a brief feasibility study to investigate 
the possibility of porting the vertical reuse framework to SV.  
One of the major obstacles is that SV does not support Aspect 
Oriented Program (AOP), and many of the module-to-system 
UVC features are implemented using AOP techniques.  

According to [9], SV can mimic AOP techniques using design 
patterns, but code implemented using design patterns require 
considerably more lines code to implement using more 
complicate software structures than the code implemented 
using native AOP language constructs.   

System UVCs that imports and instantiates module UVMs 
is an application of typical OOP programming technique, 
supported by both e and SV.  However in the UVM e system 
UVC architecture, system UVCs use when-subtypes to 
override default settings in module UVCs.  It is possible to 
implement the settings control using SV by explicitly 
exporting the configuration parameters of the module UVC.  
However, for reasons mentioned above, using design patterns 
is less convenient as it requires more up front planning.  It 
also requires accesses to module UVC source code just in case 
the system verification engineer has to modify the module 
UVC classes.  

Both the TLM port router and common configuration 
control implement the look up table using e keyed list, which 
is similar to associative array in SV.  The TLM port router 
uses template to reuse the same piece of code on different data 
types, which is similar to parameterized types in SV module.  
The biggest problem porting the framework to SV is the 
common testflow phases that used many AOP techniques.  It 
would require a lot of work to replace the current AOP 
implementation of the testflow phases using callback functions 
and class factories.  It may not be practical, but it is possible, 
at least in theory.  

VII. CONCLUSION 

In this paper, the authors successfully implemented a 
module to system vertical reuse strategy to verify a 200 million 
gate device. There are many advantages of vertical reuse 
including higher productivity, fewer bugs and higher quality in 
the testbench code, and faster RTL debug turnaround time.  
All benefits contribute to both lowering the development cost 
and shortening the project schedule.  There is a 4x 
productivity improvement when measuring productivity using 
code density. 

REFERENCES 

[1] H. Froehlich, “Increased verification productivity through extensive 
reuse”, Design Reuse, http://www.design-reuse.com 
/articles/7355/increased-verification-productivity-through-extensive-reu
se.html 

[2] Think Verification, “Plug, play and reuse”, http:// 
www.thinkverification.com/tips/55.html 

[3] T.P. Ng, “Reusable verification environment for core based Designs”, 
http://www.design-reuse.com/articles/9924/reusable-verification-enviro
nment-for-core-based-designs.html 

[4] S. D’Onofrio, “Building reusable verification environments with 
OVM”, Tech Design Forums, http://www.techdesignforums. com 
/eda/technique/building-reusable-verification-environments-with-ovm/ 

[5] J.H. Zhang,. “Achieving vertical reuse in SoC verification”, CDNLive 
2005 

[6] M. Strickland, “Simplifying vertical reuse with specman elite”, 
CDNLive 2007 

[7] Cadence, “UVM e user guide, Cadence doc”, 2012 

[8] H. Chan, “Can you even debug a 200M+ gate design?”, DVCON2013 

[9] M. Vax, “Where OOP falls short of hardware verification needs”, 
DVCON201

http://www.design-reuse.com/
http://www.thinkverification.com/
http://www.techdesignforums.com/


 


